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Our recently proposed scheme for using natural orbitals from atomic 
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L 3 P  CI wave functions as a basis set for LCAO calculations is extended for the 

calculation of molecular properties. For one-electron properties like 

multipole moments, which are determined largely by the outennost regions 

of the molecular wave function, it is necessary to increase the flexibility of 

the basis in these regions. This is most easily done by uncontracting the 

outermost Gaussian primitives, and/or by adding diffuse primitives. A 

similar approach can be employed for the calculation of polarizabilities. 

Properties which are not dominated by the long-range part of the wave 

function, such as spectroscopic constants or electric field gradients at the 

nucleus, can generally be treated satisfactorily with the original AN0 sets. 
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I. Introduction 

In a recent paper [l] (referred to hereafter as I) we proposed the use 

of truncated sets of atomic natural orbitals (ANOs) as basis functions for 

molecular calculations. ANOs provide very compact basis sets that can 

recover a large fraction of the correlation energy in molecular calculations. 

In practical applications, the ANOs are expanded as general contractions of 

Gaussian functions: the size of the contracted basis set is the limiting factor 

that determines the feasibility of an accurate correlated calculation, whereas 

the primitive set only affects the integral evaluation time, which is usually of 

I 

minor significance. 

It was shown in I that AN0 basis sets yield very small contraction 

errors (defined as the difference between a result using a contracted basis and 

the result obtained with the uncontracted primitive set) for both SCF and CI 

energies, in molecules as well as in the atoms. This is in agreement with 

earlier studies by Petersson et al. (see Ref. 2 and references therein), using 

pair-natural orbitals. Similar conclusions can also be inferred from a study 

by Davidson and Feller [3], who used a double-zeta AN0 basis in a set of 
calculations comparing different basis sets for the water molecule. Two 

particularly important conclusions can be drawn from the work presented in 

I: first, that the occupation numbers of the atomic natural orbitals (ANOs) 

provide a very simple and reliable criterion for determining the size of 

contracted basis sets to be used when a particular accuracy in the energy is 

required, and, second, that large sets of primitive functions can be contracted 

using ANOs with essentially no loss in the correlation energy. This permits 

the use of large primitive polarization sets that effectively saturate the space 

for a given angular quantum number without the size of the contracted basis 

2 



). i 

! 
! .  

1 

i 

becoming manageably large. However, while ANOs clearly provide a 

route to minimum contraction loss and efficient use of large primitive sets as 

far as total energies are concerned, it is not clear that they will be as suitable 

for the calculation of molecular properties. The requirements on a basis set 

to yield good properties may be different (depending on the property) from 

those for calculating good energies. 

Some properties, such as multipole moments or polarizabilities, depend 

crucially on the outermost regions of the charge density. It is, of course, well 

known that to achieve high accuracy in such properties it is necessary to 

augment energy-optimized primitive sets with diffuse functions (including 

diffuse polarization functions). Consequently, a contraction procedure such 

as the AN0 prescription of I, which is designed to minimize the contraction 

error in the total energy when contracting an energy-optimized primitive set, 

is unlikely to yield good values for these properties without some modifi- 

cation. One obvious approach to increasing the flexibility in the outer part of 

the wave function is to add (uncontracted) diffuse primitives to the A N 0  
contracted sets. It will usually be the case, however, that the most strongly 

occupied ANOs will contain only a small contribution from the most diffuse 

primitives in the original basis, and it may be necessary to uncontract the 

outermost primitives in the AN0 set. In fact, as will be seen below, this latter 

step is probably all that is required to essentially eliminate contraction loss in 

dipole moments. For higher multipole moments further augmentation of the 

basis is desirable. Of course, the contraction procedure is unaffected by such 

further augmentation. Some aspects of these modifications to A N 0  

contractions have been discussed previously [4,5]. 

Contraction errors in spectroscopic constants and molecular structures 

can be expected to be small in basis sets which yield small contraction errors 
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in the total energies. The original A N 0  procedure is therefore expected to 

perform well for such quantities: this hypothesis is supported not only by the 

comparisons with uncontracted calculations shown below, but also in a 
number of recent applications (see, for example, Ref. 6 and references 

therein). A property such as electric field gradient at the nucleus (EFG), 
which shows an 1-3 dependence, but whose inner-shell contribution tends to 

average to zero because of the near-spherical shape of the inner-shell charge 

distribution, is dominated by the inner part of the valence charge 

distribution. It might therefore be expected that an A N 0  set would yield 

little contraction loss in EFGs, and this is generally borne out by our results. 

t 
'. 

Our purpose in the present work is to discuss in detail the performance 

of ANOs in property calculations as we did previously for the total energy, 

and we will therefore concentrate on primitive basis sets like those used in I. 

These sets are certainly large enough to saturate the radial expansion for 

every I-value considered, and in some cases may be larger than necessary. It 

is entirely plausible that by careful optimization of polarization exponents 

ANOs could be expanded in smaller primitive polarization sets. Dunning [7] 
has recently investigated the alternative of using uncontracted optimized 

primitive polarization sets and additional valence basis functions. This 

approach may provide an economic alternative to AN0 basis sets. 

In the following section we briefly discuss the computational methods 

used, then in section III results of contraction losses in properties are given 
for the molecules H20, HBr, N2, and OH, and for Ne atom. Section IV 
contains our conclusions. It should be understood that our aim in these 

investigations is to show how to reduce the contraction error incurred when 

large primitive basis sets are used in accurate molecular calculations. With a 

segmented contraction scheme, a rather flexible contraction is usually 
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required. In this work, we consider only segmented sets of the same size as 

the generally contracted ones, since a larger size would make the former 

unfeasible for a high-quality correlation treatment. For example, a primitive 

set such as (13s 8p) for-a first-row atom can be contracted to [8s 6p] using a 

segmented contraction with a very small contraction error, but this is a much 

larger basis than a [5s 4p] AN0 contraction that gives a smaller contraction 

error in the total energy. We will not consider such segmented sets. Also, 

while it can be expected that basis sets of the quality we consider, when used 

with suitable treatments of electron correlation, will give very reliable 

estimates of molecular properties, it is not the purpose of this work to 

compare results with experiment or with other calculations. We concentrate 

here exclusively on the issue of contraction error. 
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II. Computational methods 

The method used for obtaining the AN0 contraction coefficients has 

been described in detail in I. A single-reference single and double excitation 

CI (SDCI) calculation is performed on the ground state of the desired atom 

in the chosen primitive basis set. Only the valence electrons of the atom are 

included in the correlation treatment in the present work. The natural 

orbitals from this SDCI wave function, ordered by decreasing occupation 

numbers, are then used to define the contraction coefficients. Symmetry and 

equivalence restrictions are imposed on the ANOs [8]. Primitive basis sets 

from a number of sources have been used and these are identified in 

section III below. The conventional notation for contracted basis sets has 

been extended here: [5+ls 4+lp 3+ld] indicates a contracted basis 

comprising 5 s-type ANOs and the outermost primitive s function 

uncontracted, etc. Supplementary diffuse functions are always added 

uncontracted: the addition of two diffuse s primitives and one diffuse 

p primitive is denoted + (2s lp). 

All calculations were performed with the MOLECULESWEDEN [9] 
program system, running on the NASA Ames CRAY X-MP/48 or the 

Minnesota Supercomputer Center CRAY 2. Molecular geometries are 

given in the text or tables for each species studied. All basis sets comprised 

pure spherical harmonic basis functions. One-electron properties have 

usually been computed as expectation values of the appropriate operators; 

higher-order properties like polarizabilities have been computed as energy 

derivatives 

The analysis of results is complicated by the number of properties 

computed here. In I it was possible to judge the performance of a given basis 
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set from just the computed energy. While it is possible to examine a range of 

properties, it would hardly be feasible to publish all of the data required, at 
least for the extensive study of H20 and HBr presented below. We have 

therefore proceeded via an alternative approach, which draws on a scheme 

for estimating basis set quality devised by Maroulis and co-workers [lo]. 
Consider a set of N properties obtained in n basis sets: 

Here i indexes basis sets, with i = 0 being a chosen “reference” set (say, the 

uncontracted basis), while each Qa is a different property, such as energy, 

dipole moment component, polarizability tensor component, etc. All 

properties are evaluated at the same level of wave function, such as SCF, 

SDCI, or indeed a correlation contribution given by the difference between 

the two. We can form the set of differences { P }  where 

so that the reference values are all zero, and then scale these differences as 

Hence the “worst” result for a particular property (that is, the result that 
deviates most from the reference result), has a Jai value of one, while the 

reference result has a Jai value of zero. We can regard the set { Jai : a = 1, ... 
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N} as the elements of a vector Ji  for each basis 

n o m  

i, and thus regard the (scaled) 

as a single measure of quality for basis set i, as Ji essentially represents the 

“distance” between the reference basis and basis i for the particular set of 
properties. Hence the smaller is Ji, the better the agreement between basis i 
and the reference basis. If the latter is the uncontracted basis, Ji then 

immediately gives a measure of the contraction error for the set of properties 

considered The treatment of Maroulis et al. goes beyond this level by using 

logarithms of J*i values, in which case the reference values &come infinite, 

in order to make contact with information theory, but such elaborations are 

unnecessary for our purpose. 

I 
f 
3 
? 

a 
The comparison of basis sets by Ji values is very simple, as the results 

can conveniently be presented as column graphs of a set of values {Ji: i = 

l ,n} .  In addition, it is possible to consider subsets of the overall set of 
properties for comparison purposes. For example, it may be desirable to 

know not only how well a basis performs for all properties computed, but 

also for a selected subset such as multipole moments or polarizabilities. It is 
only necessary to restrict the range of a used in computing (9) to generate 

this information. 
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111. Results and Discussion. 

A. H20 one-electron properties 

The oxygen atomic basis sets are derived from van Duijneveldt’s 

(13s 8 p )  primitive set [ll], augmented with six d functions forming an 
even-tempered sequence (apk,  0 I k I S )  with a = 0.13 and p = 2.5, 

and an even-tempered sequence of four ffunctions (a = 0.39, p = 2.5). 

The primitive hydrogen basis set is the (8s 6p 4 4  basis given in I. The 

AN0 contractions are based on natural orbitals from an SDCI wave function 

for ground-state oxygen atom and for the hydrogen molecule (see I). It 

should be noted that when results for “segmented” contractions are quoted, 

the sp basis for 0 and s for H comprise one contracted function of each 

symmetry (using van Duijneveldt’s SCF coefficients) and the outermost 

primitives uncontracted, while for the higher angular functions the 

contraction pattern is the same but the coefficients are taken from 0 or H2 

natural orbitals. The oxygen atom is positioned at the origin, with the 

hydrogen atoms at coordinates (k1.43 153,0,1.10941), and all property 

values quoted are relative to the origin. Different contraction schemes are 

labelled according to Table 1. 

It is not feasible to present results for all properties and all basis sets in 

tabular form, so we quote results for a few properties in Tables 1 and 2 and 

use column graphs of {y} values, as discussed in section 11, for the full 

comparisons. Since the reference values were obtained with the uncontracted 

basis, the figures show the contraction error for each contracted basis. In the 

tables we give SCF and SDCI results for the uncontracted basis (labelled U) 
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and then for each contracted basis we give the contraction error. The figures 

show in addition the correlation contribution (the difference between the 

SDCI and SCF results). This is useful in identifying cancellations between 
SCF and correlation errors. Fig. 1 is based on { J} values for the following 

properties: energy, electric field and electric field gradient at the nuclei, 

dipole and quadrupole moment, diamagnetic susceptibility, the mass-velocity 

and Darwin relativistic energy contributions [12] and the potential at the set 

of points {(O,O,-2): 2 =.2, 4, 6, lo}. Fig. 2 compares “point” 

properties: potential at the aforementioned points and electric field and 

electric field gradient at the nuclei, while Fig. 3 compares only the 

permanent moments (dipole, quadrupole and octopole). Optimum 

geometries were obtained with SDCI wave functions, but apart from the 

smallest contracted sets - [3s 2p ld/2s lp] AN0 and segmented (sets F and 
I, respectively) - all the results were so close to the uncontracted basis 

values (within 0.005 a. in bond length and 0.3” in angle) that no meaningful 

comparisons can be made. 

The energy results are similar to those discussed in I. Replacing the 

ANOs with the lowest occupation numbers by the outermost primitive 

uncontracted generally improves the SCF energy somewhat but makes the 

correlation energy worse. The addition of diffuse functions (basis C) does 

not significantly affect the energies, as expected. From Table 1 it can be 

seen that the largest contracted sets: AN0 sets A and B and segmented 

set G, perform about equally well for potential and for electric field 

gradient at the nuclei, the AN0 sets give better EFG results for H and the 

segmented set better results for 0. The comparison in Fig. 2 shows that the 

correlation contribution error for set A is larger than that for set B, so 

uncontracting the outermost primitive has some effect on these properties. 
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Again, as expected, these properties are unaffected by the addition of diffuse 

functions. 

The correlation errors for the smaller sets D and E are similar, but set 

E has a smaller SCF contraction error and thus a lower SDCI error, as can be 

seen in Fig. 2. Set H performs similarly to set D at the SCF level, but has a 

much larger correlation contraction error. The smallest sets, F and I are not 

satisfactory for any of these properties and show large contraction errors 

even at the SCF level. For the point properties there is much less disparity 

among the correlation contraction errors than among the corresponding SCF 

values, as seen in Fig. 2. This suggests that the contraction error in these 

properties converges more slowly than does the correlation energy itself. It 

is likely that better 0 EFGs, for example, would require including more 

ANOs, or perhaps using a modified AN0 basis set such as 

[5+ls 4+lp 3+ld 2f/4+ls 3+lp 2 4 .  A similar conclusion is drawn for 

HBr in the next section. 
Table 2 contains values for various multipole moments of H20. In 

addition to the quadrupole moment, we have included one component of the 

diamagnetic susceptibility tensor x.  In combination with the two independent 

components of the quadrupole moment tensor (0) we give, this defines all 

non-vanishing second moments. We also give the two independent 

components of the octopole moment tensor Q. Fig. 3 shows a comparison of 
(9) values for all non-vanishing components of the multipole moments and 

the diamagnetic susceptibilities. The figure illustrates the inadequacy of the 

smallest sets, F and I, and also of set D, the [4s 3p 2d lf/3s 2p Id] AN0 

set. The contraction error in the correlation contribution for set A, the 

[5s 4p 3d 2f/4s 3p 2d] AN0 set is also large, but this appears to be partly 

cancelled by SCF contraction errors. Clearly, the best results are obtained 



with large sets in which the outermost primitives are uncontracted, although 
surprisingly Fig. 3 indicates that set E is superior to the larger set B, . 

obtained by a similar prescription. The contraction errors in the octopole 

moments for set E are substantially smaller than for set B, which is 

unexpected, and even when diffuse functions are added to set B to give set C 

the same surprising conclusion holds. This observation may derive from a 

cancellation in errors in the values of the Cartesian third moments computed 

with set E. 
Fig. 1 shows a comparison of the different basis sets for all the 

properties computed (including the energy). Overall, sets A, B, C, and G 

perform best, with little to choose between them if all properties are of 

interest. The energies obtained with the segmented contraction of set G are 

inferior to those of the other three sets, but set G produces better multipole 

moments. Sets A and B are the same size as set G, but the modified A N 0  

contraction scheme of set B, with the outermost primitive uncontracted is 

I 

clearly superior to A for multipole moments, while giving very similar 

energies to A (and much better energies than G). If both energies and 

multipole moments are of interest set B appears to offer the best 

compromise. The smaller sets, D, E and H, show larger contraction errors 

overall, although not by much in the case of set E. These sets appear to be the 

smallest that can be used reliably, as the contraction errors for sets F and I 

are unacceptably large. 

B. HBr one-electron properties 
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The primitive atomic spd basis set used for Br is derived from 

Dunning’s (14s 1 lp 5d) set [ 131. The outermost two p primitives were 

replaced by four primitives with exponents 0.7052, 0.3026, 0.1299, and 

0.0557, and the dspace was augmented with two diffuse dprimitives 

(exponents 0.4390 and 0.1463). Four f sets were added, with exponents 

chosen as an even-tempered sequence (apk, 0 I k I 3) with a = 0.13 and 
p = 2.5. The primitive set for H was the (8s 6p 4d)  basis used for H20 

above. The SDCI calculations performed on HBr involve correlation of the 
eight valence electrons only. The bond length used was 2.673 ao, the 

experimental equilibrium value [14]. The contraction schemes used in the 

comparisons are labelled and identified in Table 3. A first set of A N 0  

contractions was based on Br ANOs, with uncontraction of the outermost 

primitives in some cases. A second set of A N 0  contractions was based on 

ANOs obtained by averaging the density matrices for SDCI calculations on 

Br and Br-; again, some sets feature uncontracting the most diffuse 

primitives. In addition to comparing with a basis set obtained from 

Raffenetti’s approach to general contraction [15] (that is, the use of atomic 

SCF orbitals), we have also generated a segmented basis set for Br. This is 

not straightforward for a set of this size (as noted previously by Dun- 

ning [ 131, who recommended using a general contraction), and certainly 

cannot be satisfactorily achieved without duplication of some primitives in 

different contracted functions unless much larger contracted sets are 

tolerated. 
Column graphs of (9) values for these various sets are given in 

Figs. 4-6. The properties used in generating the first of these graphs 

comprise total energies, dipole, quadrupole and octopole moments, EFGs at 

the nuclei, electric field at the nuclei, diamagnetic susceptibility, and the 
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mass-velocity and Darwin contributions to the first-order relativistic 

correction to the energy. Only property values distinct by symmetry (and by 

trace conditions on operators) were included. In addition to considering all 
properties, as for H20 above we consider also the subset of (9) values 

obtained from only the electric. moments, and from only the “point” 

properties, which for HBr comprise EFG and electric field at the nuclei. 

The multipole moment results obtained with various basis sets are listed 

in Table 3. Again, the uncontracted results are given explicitly and only the 

contraction errors are given for the contracted basis sets. For the dipole 

moment all of the basis sets show only small contraction losses in both the 

SCF and correlation contributions. For the quadrupole and octopole 

moments there are larger differences between the various sets and larger 

contraction errors. The largest contracted basis, set C, produces the smallest 

contraction errors, and is the only set that accurately reproduces the 

uncontracted SCF and correlation contributions to Qzzz. The set contracted 
using Raffenetti’s prescription for Br and ANOs (from H2) for H is 

unsatisfactory at both the SCF and CI levels, although this appears to be a 

problem mainly with combining the different contraction schemes, as the 

results obtained when Raffenetti’s prescription is used’for both Br and H are 

fairly good. Possibly the AN0 hydrogen basis is too compact to provide a 

balanced description of the charge distribution when combined with the 

flexible Br Raffenetti contraction. 

., 

Averaging the ANOs for Br and Br- produces a basis set in which the 

radial maxima of the valence orbitals occur at larger r than those in Br, and it 

might be hoped that such a basis set would provide a more flexible 

description of the outer region of the electron density. This does not appear 

to be the case in HBr, where such a basis shows no particular advantage over 

* .  

14 



L 

the Br ANOs for multipole moments. In fact, set G, obtained from averaged 

ANOs, is inferior to that obtained from Br ANOs (set A). Evidently, 

bromine in HBr is more similar to neutral Br than to Br-, as suggested by a 

point dipole approximation to the dipole moment, and it appears that there is 

no useful gain in flexibility for multipole moment calculations from using 

averaged ANOs. Of course, for calculations on more ionic species this would 

probably not be the case. Overall, only the modified A N 0  contractions are 

satisfactory for the higher multipole moments, as Fig 5 also shows, but (in 
contrast to H20 above) the segmented contraction, set E, is no better than the 

modified A N 0  contractions B or C, despite the flexibility obtained by 

having a number of the outermost primitives uncontracted. Further, there is 

some evidence that the performance of the segmented contraction may derive 

from a canceUation of errors: the segmented basis results for the diamagnetic 

susceptibility xZz are the worst of any of the contraction schemes, and this 

property is simply a different combination of second moment integrals from 

0 2 2 .  

The results for EFGs show more consistent trends than do the 

multipole moment results, as can be seen from Fig 6: all of the contracted 

sets reproduce the uncontracted basis EFG values at H very well, and none of 

the contracted sets are satisfactory for the Br values, at least not at the SCF 

level. The segmented basis E gives the worst results, but even the largest 

A N 0  set, C, shows a discrepancy of 4% with the uncontracted result. Again, 

as expected from the 1-3 form of the operator and as observed above for 
H20, uncontracting the outermost primitives does little to improve the result, 

at least if this function replaces an ANO. Thus again the basis set contraction 

requirements for EFGs are seen to be quite different from those for 

multipole moments. While set C gives the best agreement with the 
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11 is likely that an [8s 7 p  5d 3f/5s 4p 3d] set 

4NOs would perform even better. Finally, as the 

, ,\\culation in which only the Br valence electrons are 

describe the innermost valence and outermost core 

ANOs defined by a calculation in which the M shell 

\,jrform much better in this regard, but the size of the 

,,,\bably be impractically large - additional d andf 

tx included, etc. 

\ts obtained for HBr are also listed in Table 3. The 

, $F level is small for all sets except the segmented 

Q almost entirely the contraction error in Br. The 

vrelation energy is small for all sets, although the 

\ways superior to those obtained by Raffenetti's 
lmented set. The first-order perturbation theory 

\+tic effects [ 121 shows rather small contraction 

+xcept again for the segmented set. The rather larger 

Raffenetti contraction are probably due to the fact 

, (lexible in the inner valence region of Br as the AN0 
\nd the occupied SCF space are simply the outermost 

, sets might be expected to perform better than AN0 

roperties such as multipole moments, but worse for 

\ \ \  t ? s  or the relativistic contribution, as observed. 

{Cd the two lowest ionization potentials (IPS) of HBr 

\.$d in Table 3. All of the contracted sets yield very 

(less than 0.01 eV) in these IPS and little useful 
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C .  OH GI3 dipole moment function 

The dipole moment of OH in its ground (2H) state has a maximum 

value at a considerably larger internuclear separation than equilibrium. The 

dipole moment function and potential curve were recently investigated [ 161 

using multireference CI (MRCI) wave functions and an extended 

[ 5 s  4p 3 + l d  2f lg/4s 3 p  2d] + (1s l p ) ( o n  0) basis. In order to 

investigate the performance of different modified AN0 contraction schemes, 

we have computed the dipole moment function and potential curve with 

several different basis sets. All are derived from the same 

(13s 8p 6d 4fi + (1s lp) primitive set on 0 and (8s 6p  4d) set on H. This 

set differs from the primitive set used to construct the basis of Ref. 16 only 

in the omission of g functions. The reference space for the MRCI was the 

same as that of Ref. 16. 

Spectroscopic constants and dipole moment function results for OH are 

given in Table 4. The maximum value of the dipole moment is denoted 

pmax, and the internuclear separation at which this maximum occurs is 

denoted rPmax. The spectroscopic constants for all contracted sets are in 

good agreement with the uncontracted set. The contraction loss in the dipole 

moment maximum value is very small for those sets with increased flexibility 

in the outermost region: only the unmodified [5s 4p 3d 2f/4s 3p 2 4  set, 

which omits the diffuse (1s lp) set on 0, shows a perceptible difference. On 

the other hand, r P m a x  is more sensitive to contraction. The 

[4+ls 3+lp 3+ld 2f/4s 3p 2 4  + (1s lp) set, in which the most weakly 

occupied s and p ANOs are replaced by the outermost primitive 

uncontracted, has a slightly reduced contraction error relative to the original 
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[5s 4p 3+ld 2f/4s 3p 2d] + (1s lp) set, but there is still a difference of 
almost 0.01 a0 in rPmm with the uncontracted result. This suggests that there 

is a contraction error of some 0.008 a0 in the rPmax value of Ref. 16, which 

is consistent with the estimate there that the computed value was 0.007 a0 too 

large [17]. The importance of uncontracting the outermost d primitive is 

discussed further in Ref. 17, where it is shown that the absence of diffuse d 

functions has a noticeable effect on the dipole moment function. For 

example, the 3d primitive set of Dunning [7] requires augmentation with a 

diffuse d to correctly predict the slope of the dipole moment at re. 
\ 

The OH results provide further support for the conclusions drawn 

above for H20 that good results for properties such as dipole moments can be 

obtained by uncontracting the outermost primitive and/or by adding a diffuse 

sp set. As a final note on OH, we have investigated whether basis set 

contraction affects the difference between a dipole moment computed as the 

expectation value of the dipole operator, and as the first derivative of the 

energy with respect to an applied field. For the uncontracted basis, these two 

approaches give MRCI dipole moment values that differ by 0.0028 ax.  at 

r = 2.2 ao. The [4+1s 3+lp 3+ld 2f/4s 3p 2 4  + (1s 1 p )  set shows the 

same difference between the two approaches, while with the 

[5s  4p 3+ld 2f/4s 3p  2d] + (1s lp) set the difference has increased 

slightly, to 0.0030 a.u. Such differences are sufficiently small that is 

difficult to draw firm conclusions about the effect of basis set contraction, 

except that they appear to be very small for sets of this size. 

D. Polarizabilities of Ne, N2 and H20 
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Up to this point we have considered only the calculation of first-order 

properties. For higher-order electric properties the requirements on 

primitive basis sets are very demanding [18], quite apart from any consider- 

ations of basis set contraction. We have therefore investigated the electric 

susceptibilities of the neon atom, with attention both to the construction of 

primitive sets and their contraction. All calculations were carried out using 

finite perturbation methods, applying fields and field gradients of various 

strengths to yield the static dipole polarizability, dipole hyperpolarizability, 

dipole-dipole-quadrupole hyperpolarizability, and the quadrupole 

polarizability. The values are reported according to Buckingham's 

definitions [ 191 for the mean polarizability (a), second hyper- 

polarizability (y), dipole-dipole-quadrupole hyperpolarizability ( B )  and 

quadrupole polarizability (C). Results are reported for both SCF and SDCI 

wave functions; only the eight valence electrons were correlated in the latter. 

All of the contraction schemes investigated were based on the (1 3s 8p) 

primitive set of van Duijneveldt [ll], augmented with six d functions 

forming an even-tempered sequence (@, 0 5 k 5 5) with a = 0.20 and 

p = 2.5, and an even-tempered sequence of four ffunctions (a = 0.61, 

p = 2.5). All sets were augmented with an uncontracted (2s 2p Id If) 

diffuse set with exponents (as = 0.12 and 0.048, ap = 0.064 and 0.0256, 

ad = 0.08, and af= 0.24). SCF and SDCI energies were computed in the 

presence of combinations of fields of strength 0.005,O.OOl or 0.002 a.u and 

field gradients of strength k0.0025 or 0.005 a.u. and fitted to a functional 

form from which the polarizabilities were obtained. 

For the mean polarizability a the larger segmented set shows the 

smallest contraction error, although this set overestimates the correlation 

contribution to a. The smaller segmented set gives polarizability contraction 
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errors smaller than the AN0 set of the same size, but larger than any of the 

larger AN0 sets. The modified AN0 contraction scheme of the 

[4+ls 3+lp 2+ld l+lfl + (2s 2p Id If) set yields small contraction 

errors for ‘y, B ,  and C, similar to those of the larger segmented contraction, 

with the benefit of much less contraction error in the energies. It is clear 

from the results of Table 5 that the unmodified AN0 contraction scheme, 

even when the diffuse (2s 2p Id lj) set is added, is not capable of yielding 

an acceptable contraction error in polarizabilities. This is consistent with the 

observations above in the context of molecular multipole moments. 

In order to ensure that the conclusions drawn about the polarizabilities 

of Ne carry over to molecules, we have determined the dipole polarizability 

tensor for the molecules N2 and H20. Because of the lower symmetry and 

larger number of tensor components that must be determined, it is not 

possible to use primitive sets as large as those employed in the calculations 

described in this work up to this point. The nitrogen primitive set is the 

(13s 8p 6 d )  set described in I; an uncontracted diffuse (1s lp) set 

(exponents a, = 0.056, and ap = 0.038) is added in some calculations. The 

0 primitive basis is that given in section IIIA above with the f functions 

omitted, and the H basis is also that of section IIIA, with the d functions 
omitted. The N2 bond length is 2.074 a. and the H20 geometry is that given 

in section IIIA above. SCF and SDCI energies were computed for applied 

fields of 0.005 a.u. (and the opposite sign where required by symmetry) and 

the polarizability components were determined by finite differences. The 
eight valence electrons were correlated in the H20 calculations and the ten 

valence electrons in the N2 calculations. In addition to the numerical second 

differentiation of the energy, we have evaluated polarizability components 

from the expectation value of the dipole operator over a wave function 
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generated in the presence of a perturbing electric field. There is no reason 

for the two routes to agree for a truncated CI wave function, but in practice 

the values agreed to within 1% in all cases, so we report only the energy 

derivative values. 
Table 6 lists computed polarizabilities for N2. There is clearly a very 

considerable contraction error associated with the [5s 4p 3d] AN0 set, but 

this is almost entirely alleviated by replacing the most weakly occupied d- 

type AN0 by the outermost d primitive. This is especially true when a 

diffuse (1s l p )  set is added to the basis. Evidently these additional functions 

provide enough flexibility in the sp basis to make it unnecessary to replace I 

the most weakly occupied ANOs by the outermost s andp primitives, as 

doing this after adding the diffuse set affects the computed polarizabilities by 

much less than 1% (although the contraction error actually increases 

slightly), and the results are very close to the uncontracted basis. On the 

other hand, if the diffuse set is not added the effect of uncontracting the 

outermost s and p primitives is 1-2%, and the results are still more than 1 % 

from the uncontracted basis values, at least for R,. This behaviour has also 

been observed for CO by Bauschlicher and Barnes [20]. For the 

polarizability, therefore, it seems unnecessary to modify the A N 0  

contraction in the sp space provided diffuse functions are added, although the 

loss in energy if the contraction is modified is hardly significant. If diffuse 

functions are not added the contraction must be modified by leaving the 

outermost functions uncontracted. 
The H2O polarizability results listed in Table 7 show similar 

behaviour to Ne and N2. No diffuse functions were added in this case, and 

the inadequacy of the unmodified A N 0  contraction can be clearly seen in the 

SCF and SDCI polarizability values. The out-of-plane component ay, shows 
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a contraction error of more than 20%. On the other hand, replacing the most 
weakly occupied ANOs with the outermost primitives uncontracted . 

essentially eliminates the contraction error, with little loss in energy. The 
modified contraction thus performs even better for H20 than for N2, and the 

molecular results thus strongly support the conclusions drawn in the previous 

subsection and elsewhere [4,5,20] about basis set contraction and 

polarizabilities. 



a 
IV. Conclusions. 

The present study is both broader in scope and more detailed than our 

previous work [ 5 ] ,  or various individual investigations that have appeared 

(see, for example, Ref. 6 and references therein). The major conclusions 

remain unchanged: while AN0 contractions appear to give the best 

molecular energies obtainable with contracted sets of a given size, their 

performance on properties is equally good only for quantities that depend 

directly on the energy, such as spectroscopic constants. Of the one-electron 

properties we have studied, the “point” properties, such as EFGs, are also 

well described by unmodified AN0 contractions, although the convergence 

of the contraction error in these properties seems slower than for the energy. 

Multipole moments and related properties like diamagnetic susceptibilities 

show unacceptably large contraction errors using even the largest 

unmodified AN0 sets, and it is necessary to modify the contraction scheme to 

rectify this. Simply uncontracting the outermost primitive is all that is 

usually required, and for larger primitive sets this will be accompanied by a 

much smaller contraction loss in the energy than would be obtained with 

segmented contracted sets of the same size. Second-order properties such as 

polarizabilities have stringent demands on the primitive basis, requiring the 

addition of diffuse functions (possibly of high angular momentum), but it 

appears that the modified AN0 contraction scheme can be used to generate 

compact contracted sets for these properties as well. 
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Table 4. OH MRCI spectroscopic constants" and dipole momentb 

Basis 

(1 3s 8p 6d 4f/8s 6p 46) + (1s lp) 

[5s 4p 3+ld 2g4s 3p 26] + (1s lp) 

[4+ls 3+lp 3+ld 2f4s 3p 26J + (1s lp) 

[5s 4p 3d 2f4s 3p 2 4  
C 

are in A, De in eV, w, in cm-1 

b r p m a  in ao, p m a  in a.u. 

5 Not computed 

re De cy, Pmax 

0.970 4.58 3706 0.668 1 

0.97 1 4.57 3708 0.6689 

0.970 4.58 37 10 0.6678 

C C 0.6779 C 

rpmax 

2.275 

2.283 

2.28 1 

2.265 



Table 5. Ne SCF and SDCI polarizabilitiesa (a.u.) 

Basis 

(13s 8p 6d 4j) + (2s 2p Id lj) 

[4+ls 3+lp 2+ld l+lA + (2s 2p ld 18 

[5s 4p 3d2fl+ (2s 2p Id lj) 

14s 3p 2d 1fJ + (2s 2p Id lj) 

[5s 4p 3d 2fl+ (2s 2p Id 18 segmented 

[4s 3p 2d lfl + (2s 2p Id 18 segmented 

Upper entries SCF, lower enmes SDCI 

Energy 

- 128.546582 

-128.832599 

-128.546578 

-128.82 1244 

- 128.54655 1 

-128.828787 

- 128.546502 

-128.8 16958 

-128.537378 

- 128.800440 

- 128.4841 56 

- 128.7 122 19 

a Y B ' C  

2.376 69.27 -13.24 3.12 

2.601 98.50 -16.57 3.46 

2.339 69.58 -13.37 3.10 

2.570 97.62 -16.79 3.46 

2.155 

2.345 

1.962 

2.137 

2.37 1 

2.6 16 

2.223 

2.487 

80.02 

113.70 

84.7 1 

122.48 

68.61 

98.23 

67.85 

100.90 

- 12.67 

-16.18 

-12.43 

-16.20 

-13.17 

-16.75 

-13.28 

-17.25 

3 .OO 

3.34 

2.86 

3.23 

3.1 1 

3.49 

3.02 

3.44 



a 

~ ~ -~~ 

Table 6. N2 SCF and SDCI polarizabilitya (a.u.) 

Basis Energy 

(13s 8p 6 4  + (1s lp) 

[5s 4p 3 4  + (1s lp) 

[5s 4p 2+14 + (1s lp) 

[4+ls 3+lp 2+14 + (1s lp) 

(13s 8P 66) 

[5s 4P 3 4  

[5s 4p 2+14 

[4+ls 3+lp 2+14 

a Upper entries SCF, lower enmes SDCI 

- 108.989607 10 

- 109.325 84703 

-108.98841523 

-109.32219279 

- 108.988 35063 

-109.32022835 

- 108.98766491 

- 109.3 18 13476 

-108.98958719 

- 109.32579458 

- 108.98805099 

- 109.32150923 

-108.98803587 

-109.31967725 

- 108.98764123 

- 109.3 17 837 66 

ax x 

9.83 

9.94 

9.17 

9.33 

9.74 

9.84 

9.70 

9.82 

9.8 1 

9.92 

8.8 1 

8.93 

9.55 

9.63 

9.65 

9.78 

%Z 

14.99 

14.70 

14.92 

14.60 

15.00 

14.70 

14.95 

14.64 

14.97 

14.62 

14.64 

14.20 

14.74 

14.30 

14.93 

14.60 



Table 7. H20 SCF and SDCI dipole moment and polarizabilitya (a.u.) 

Basis Energy P a x x  a Y Y  %Z 

(13s 8p 6d/8s 6p) -76.065465 0.780 9.17 7.81 8.43 

-76.3 13308 0.738 9.68 8.69 9.10 

[4+ls 3+lp 2+ld/3+ls 2+lp] -76.06462 1 0.780 9.14 7.78 8.38 

-76.307892 0.739 9.62 8.67 9.04 

[5s 4p 3d/4s 3p] -76.064749 0.788 8.62 6.12 7.63 

-76.310205 0.75 1 8.93 6.52 8.07 

a Upper entries SCF, lower entries SDCI 


